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Abstract

The frame-semantic parsing task is challeng-
ing for supervised techniques, even for those
few languages where relatively large amounts
of labeled data are available. In this prelim-
inary work, we consider unsupervised induc-
tion of frame-semantic representations. An
existing state-of-the-art Bayesian model for
PropBank-style unsupervised semantic role
induction (Titov and Klementiev, 2012) is ex-
tended to jointly induce semantic frames and
their roles. We evaluate the model perfor-
mance both quantitatively and qualitatively by
comparing the induced representation against
FrameNet annotations.

1 Introduction

Shallow representations of meaning, and semantic
role labels in particular, have a long history in lin-
guistics (Fillmore, 1968). In this paper we focus on
frame-semantic representations: a semantic frame is
a conceptual structure describing a situation (or an
entity) and its participants (or its properties). Par-
ticipants and properties are associated with seman-
tic roles (also called frame elements). For example,
following the FrameNet annotation guidelines (Rup-
penhofer et al., 2006), in the following sentences:

(a) [COOK Mary] cooks [FOOD the broccoli]
[CONTAINER in a small pan].

(b) Sautee [FOOD the onions] [MANNER gently ]
[TEMP SETTING on low heat].

the same semantic frame Apply Heat is evoked
by verbs cook and sautee, and roles COOK and
FOOD in the sentence (a) are filled by Mary and

the broccoli, respectively. Note that roles are spe-
cific to the frame, not to the individual lexical units
(verbs cook and sautee, in the example).1

Most approaches to predicting these representa-
tions, called semantic role labeling (SRL), have re-
lied on large annotated datasets (Gildea and Juraf-
sky, 2002; Carreras and Màrquez, 2005; Surdeanu
et al., 2008; Hajič et al., 2009). By far, most of
this work has focused on PropBank-style represen-
tations (Palmer et al., 2005) where roles are defined
for each individual verb, or even individual senses of
a verb. The only exceptions are modifiers and roles
A0 and A1 which correspond to proto-agent (a doer,
or initiator of the action) and proto-patient (an af-
fected entity), respectively. However, the SRL task
is known to be especially hard for the FrameNet-
style representations for a number of reasons, in-
cluding, the lack of cross-frame correspondence for
most roles, fine-grain definitions of roles and frames
in FrameNet, and relatively small amounts of statis-
tically representative data (Erk and Pado, 2006; Das
et al., 2010; Palmer and Sporleder, 2010; Das and
Smith, 2011). Another reason for reduced interest in
predicting FrameNet representations is the lack of
annotated resources for most languages, with anno-
tated corpora available or being developed only for
English (Ruppenhofer et al., 2006), German (Bur-
chardt et al., 2006), Spanish (Subirats, 2009) and
Japanese (Ohara et al., 2004).

Due to scarcity of labeled data, purely unsuper-
vised set-ups recently started to receive considerable
attention (Swier and Stevenson, 2004; Grenager and
Manning, 2006; Lang and Lapata, 2010; Lang and

1More accurately, FrameNet distinguishes core and non-
core roles with non-core roles mostly corresponding to mod-
ifiers, e.g., MANNER in sentence (b). Non-core roles are
expected to generalize across frames.



cooksMary the broccoli in a small  pan  

CONTAINER

COOK FOOD

Apply_Heat

Figure 1: An example of a semantic dependency graph.

Lapata, 2011a; Lang and Lapata, 2011b; Titov and
Klementiev, 2012). However, all these approaches
have focused on PropBank-style representations.
This may seem somewhat unnatural as FrameNet
representations, though arguably more powerful, are
harder to learn in the supervised setting, harder to
annotate, and annotated data is available for a con-
siderably fewer languages. This is the gap which we
address in this preliminary study.

More specifically, we extend an existing state-
of-the-art Bayesian model for unsupervised seman-
tic role labeling and apply it to support FrameNet-
style semantics. In other words, our method jointly
induces both frames and frame-specific semantic
roles. We experiment only with verbal predicates
and evaluate the performance of the model with re-
spect to some natural baselines. Though the scores
for frame induction are not high, we argue that this is
primarily due to very high granularity of FrameNet
frames which is hard to reproduce for unsupervised
systems, as the implicit supervision signal is not ca-
pable of providing these distinctions.

2 Task Definition

In this work, we use dependency representations
of frame semantics. Dependency representations
for SRL (Johansson and Nugues, 2008) were made
popular by CoNLL-2008 and CoNLL-2009 shared
tasks (Surdeanu et al., 2008; Hajič et al., 2009), but
for English were limited to PropBank. Recently,
English FrameNet was also released in the depen-
dency format (Bauer et al., 2012). Instead of pre-
dicting argument spans, in dependency representa-
tion the goal is, roughly, to predict the syntactic head
of the argument. The semantic dependency repre-
sentation for sentence (a) is shown in Figure 1, la-
bels on edges denote roles and labels on words de-
note frames. Note that in practice the structures can
be more complex, as, for example, arguments can
evoke their own frames or the same arguments can
be shared by multiple predicates, as in right node

raising constructions.
The SRL task, or more specifically frame-

semantic parsing task consists, at least conceptually,
of four stages: (1) identification of frame-evoking
elements(FEE), (2) identification of arguments, (3)
frame labeling and (4) role labeling. In this work,
we focus only on the frame labeling and role label-
ing stages, relying on gold standard (i.e. the oracle)
for FEEs and role identification. In other words, our
goal is to label (or cluster) edges and nodes in the
dependency graph, Figure 1. Since we focus in this
study on verbal predicates only, the first stage would
be trivial and the second stage could be handled with
heuristics as in much of previous work on unsuper-
vised SRL (Lang and Lapata, 2011a; Titov and Kle-
mentiev, 2012).

Additionally to considering only verbal predi-
cates, we also assume that every verb belongs to
a single frame. This assumption, though restric-
tive, may be reasonable in practice as (a) the dis-
tributions across frames (i.e. senses) are gener-
ally highly skewed, (b) current state-of-the-art tech-
niques for word-sense induction hardly beat most-
frequent-sense baselines in accuracy metrics (Man-
andhar et al., 2010). This assumption, or its minor
relaxations, is relatively standard in work on unsu-
pervised semantic parsing tasks (Poon and Domin-
gos, 2009; Poon and Domingos, 2010; Titov and
Klementiev, 2011). From the modeling prospective,
there are no major obstacles to relaxing this assump-
tion, but it would lead to a major explosion of the
search space and, as a result, slow inference.

3 Model and Inference

We follow previous work on unsupervised seman-
tic role labeling (Lang and Lapata, 2011a; Titov
and Klementiev, 2012) and associate arguments with
their frame specific syntactic signatures which we
refer to as argument keys:
• Active or passive verb voice (ACT/PASS).
• Argument position relative to predicate

(LEFT/RIGHT).
• Syntactic relation to its governor.
• Preposition used for argument realization.
Semantic roles are then represented as clusters of

argument keys instead of individual argument occur-
rences. This representation aids our models in in-
ducing high purity clusters (of argument keys) while



reducing their granularity. Thus, if an argument key
k is assigned to a role r (k ∈ r), all of its occurrences
are labeled r.

3.1 A model for frame-semantic parsing
Our approach is similar to the models of Titov and
Klementiev (2012; 2011). Please, see Section 5 for
a discussion of the differences.

Our model encodes three assumptions about
frames and semantic roles. First, we assume that
the distribution of lexical units (verbal predicates)
is sparse for each semantic frame. Second, we en-
force the selectional restriction assumption: we as-
sume that the distribution over potential argument
fillers is sparse for every role, implying that ‘peaky’
distributions of arguments for each role r are pre-
ferred to flat distributions. Third, each role normally
appears at most once per predicate occurrence. Our
inference will search for a frame and role clustering
which meets the above requirements to the maximal
extent.

Our model associates three distributions with each
frame. The first one (φ) models the selection of lex-
ical units, the second (θ) governs the selection of ar-
gument fillers for each semantic role, and the third
(ψ) models (and penalizes) duplicate occurrence of
roles. Each frame occurrence is generated indepen-
dently given these distributions. Let us describe the
model by first defining how the set of model param-
eters and an argument key clustering are drawn, and
then explaining the generation of individual frame
instances. The generative story is formally presented
in Figure 2.

For each frame, we begin by drawing a dis-
tribution of its lexical units from a DP prior
DP (γ,H(P )) with a small concentration parame-
ter γ, and a base distribution H(P ), pre-computed as
normalized counts of all verbs in our dataset. Next,
we generate a partition of argument keys Bf from
CRP(α) with each subset r ∈ Bf representing a sin-
gle frame specific semantic role. The crucial part
of the model is the set of selectional preference pa-
rameters θf,r, the distributions of arguments x for
each role r of frame f . We represent arguments by
lemmas of their syntactic heads.2 In order to encode

2For prepositional phrases, we take as head the head noun of
the object noun phrase as it encodes crucial lexical information.
However, the preposition is not ignored but rather encoded in

the assumption about sparseness of the distributions
θf,r, we draw them from the DP prior DP (β,H(A))
with a small concentration parameter β, the base
probability distribution H(A) is just the normalized
frequencies of arguments in the corpus. Finally,
the geometric distribution ψf,r is used to model the
number of times a role r appears with a given frame
occurrence. The decision whether to generate at
least one role r is drawn from the uniform Bernoulli
distribution. If 0 is drawn then the semantic role is
not realized for the given occurrence, otherwise the
number of additional roles r is drawn from the ge-
ometric distribution Geom(ψf,r). The Beta priors
over ψ indicate the preference towards generating at
most one argument for each role.

Now, when parameters and argument key cluster-
ings are chosen, we can summarize the remainder of
the generative story as follows. We begin by inde-
pendently drawing occurrences for each frame. For
each frame occurrence, we first draw its lexical unit.
Then for each role we independently decide on the
number of role occurrences. Then we generate each
of the arguments (see GenArgument in Figure 2) by
generating an argument key kf,r uniformly from the
set of argument keys assigned to the cluster r, and fi-
nally choosing its filler xf,r, where the filler is either
a lemma or the syntactic head of the argument.

3.2 Inference

We use a simple approximate inference algo-
rithm based on greedy search for the maximum a-
posteriori clustering of lexical units and argument
keys. We begin by assigning each verbal predi-
cate to its own frame, and then iteratively choose
a pair of frames and merge them. Note that each
merge involves inducing a new set of roles, i.e. a
re-clustering of argument keys, for the new merged
frame. We use the search procedure proposed in
(Titov and Klementiev, 2012), in order to cluster ar-
gument keys for each frame.

Our search procedure chooses a pair of frames to
merge based on the largest incremental change to the
objective due to the merge. Computing the change
involves re-clustering of argument keys, so consider-
ing all pairs of initial frames containing single verbal
predicates is computationally expensive. Instead, we

the corresponding argument key.



Parameters:

for each frame f = 1, 2, . . . :
φf ∼ DP (γ,H(P )) [distrib of lexical units]
Bf ∼ CRP (α) [partition of arg keys]
for each role r ∈ Bf :
θf,r ∼ DP (β,H(A)) [distrib of arg fillers]
ψf,r ∼ Beta(η0, η1) [geom distr for dup roles]

Data Generation:

for each frame f = 1, 2, . . . :
for each occurrence of frame f :
p ∼ φf [draw a lexical unit]
for every role r ∈ Bf :

if [n ∼ Unif(0, 1)] = 1: [role appears at least once]
GenArgument(f, r) [draw one arg]
while [n ∼ ψf,r] = 1: [continue generation]

GenArgument(f, r) [draw more args]

GenArgument(f, r):
kf,r ∼ Unif(1, . . . , |r|) [draw arg key]
xf,r ∼ θf,r [draw arg filler]

Figure 2: Generative story for the frame-semantic parsing
model.

prune the space of possible pairs of verbs using a
simple but effective pre-processing step. Each verb
is associated with a vector of normalized aggregate
corpus counts of syntactic dependents of the verb
(ignoring the type of dependency relation). Cosine
similarity of these vectors are then used to prune the
pairs of verbs so that only verbs which are distribu-
tionally similar enough are considered for a merge.
Finally, the search terminates when no additional
merges result in a positive change to the objective.

4 Experimental Evaluation

4.1 Data
We used the dependency representation of the
FrameNet corpus (Bauer et al., 2012). The corpus is
automatically annotated with syntactic dependency
trees produced by the Stanford parser. The data con-
sists of 158,048 sentences with 3,474 unique verbal
predicates and 722 gold frames.

4.2 Evaluation Metrics
We cannot use supervised metrics to evaluate our
models, since we do not have an alignment between
gold labels and clusters induced in the unsupervised
setup. Instead, we use the standard purity (PU) and

collocation (CO) metrics as well as their harmonic
mean (F1) to measure the quality of the resulting
clusters. Purity measures the degree to which each
cluster contains arguments (verbs) sharing the same
gold role (gold frame) and collocation evaluates the
degree to which arguments (verbs) with the same
gold roles (gold frame) are assigned to a single clus-
ter, see (Lang and Lapata, 2010). As in previous
work, for role induction, the scores are first com-
puted for individual predicates and then averaged
with the weights proportional to the total number oc-
currences of roles for each predicate.

4.3 Model Parameters

The model parameters were tuned coarsely by visual
inspection: α = 1.e-5, β = 1.e-4, γ = 1, η0 = 100,
η1 = 1.e-10. Only a single model was evaluated
quantitatively to avoid overfitting to the evaluation
set.

4.4 Qualitative Evaluation

Our model induced 128 multi-verb frames from the
dataset. Out of 78,039 predicate occurrences in the
data, these correspond to 18,963 verb occurrences
(or, approximately, 25%). Some examples of the
induced multi-verb frames are shown in Table 1.
As we can observe from the table, our model clus-
ters semantically related verbs into a single frame,
even though they may not correspond to the same
gold frame in FrameNet. Consider, for example, the
frame (ratify::sign::accede): the verbs are semanti-
cally related and hence they should go into a single
frame, as they all denote a similar action.

Another result worth noting is that the model of-
ten clusters antonyms together as they are often used
in similar context. For example, consider the frame
(cool::heat::warm), the verbs cool, heat and warm,
all denote a change in temperature. This agrees well
with annotation in FrameNet. Similarly, we clus-
ter sell and purchase together. This contrasts with
FrameNet annotation as FrameNet treats them not
as antonyms but as different views on same situation
and according to their guidelines, different frames
are assigned to different views.

Often frames in FrameNet correspond to more
fine-grained meanings of the verbs, as we can see
in the example for (plait::braid::dye). The three de-
scribe a similar activity involving hair but FrameNet



Induced frames FrameNet frames corresponding to the verbs
(rush::dash::tiptoe) rush : [Self motion](150) [Fluidic motion](19)

dash : [Self motion](100)
tiptoe : [Self motion](114)

(ratify::sign::accede) ratify : [Ratification](41)
sign : [Sign agreement](81) [Hiring](18) [Text Creation](1)
accede : [Sign Agreement](31)

(crane::lean::bustle) crane : [Body movement](26)
lean: [Change posture](70) [Placing](22) [Posture](12)
bustle : [Self motion](55)

(cool::heat::warm) cool : [Cause temperature change](27)
heat: [Cause temperature change](52)
warm: [Cause temperature change](41) [Inchoative change of temperature](16)

(want::fib::dare) want : [Desiring](105) [Possession](44)
fib : [Prevarication](9)
dare : [Daring](21)

(encourage::intimidate::confuse) encourage : [Stimulus focus](49)
intimidate : [Stimulus focus](26)
confuse: [Stimulus focus](45)

(happen::transpire::teach) happen : [Event](38) [Coincidence](21) [Eventive affecting](1)
transpire : [Event](15)
teach : [Education teaching](7)

(do::understand::hope) do : [Intentionally affect](6) [Intentionally act](56)
understand : [Grasp](74) [Awareness](57) [Categorization](15)
hope : [Desiring](77)

(frighten::vary::reassure) frighten : [Emotion directed](44)
vary : [Diversity](24)
reassure : [Stimulus focus](35)

(plait::braid::dye) plait : [Hair configuration](11) [Grooming](12)
braid : [Hair configuration](7) [Clothing parts](6) [Rope manipulation](4)
dye : [Processing materials](18)

(sell::purchase) sell : [Commerce sell](107)
purchase : [Commerce buy](93)

(glisten::sparkle::gleam) glisten : [Location of light](52) [Light movement](1)
sparkle : [Location of light](23) [Light movement](3)
gleam : [Location of light](77) [Light movement](4)

(forestall::shush) forestall : [Thwarting](12)
shush : [Silencing](6)

Table 1: Examples of the induced multi-verb frames. The left column shows the induced verb clusters and the right
column lists the gold frames corresponding to each verb and the number in the parentheses are their occurrence counts.

gives them a finer distinction. Arguably, implicit su-
pervision signal present in the unlabeled data is not
sufficient to provide such fine-grained distinctions.

The model does not distinguish verb senses, i.e. it
always assigns a single frame to each verb, so there
is an upper bound on our clustering performance.

4.5 Quantitative Evaluation

Now we turn to quantitative evaluation of both frame
and role induction.

Frame Labeling. In this section, we evaluate how
well the induced frames correspond to the gold stan-
dard annotation. Because of the lack of relevant
previous work, we use only a trivial baseline which

places each verb in a separate cluster (NoCluster-
ing). The results are summarized in Table 3.

As we can see from the results, our model
achieves a small, but probably significant, improve-
ment in the F1-score. Though the scores are
fairly low, note that, as discussed in Section 4.4,
the model is severely penalized even for induc-
ing semantically plausible frames such as the frame
(plait::braid::dye).

Role Labeling. In this section, we evaluate how
well the induced roles correspond to the gold stan-
dard annotation. We use two baselines: one is
the syntactic baseline SyntF, which simply clus-
ters arguments according to the dependency rela-



PU CO F1
Our approach 78.9 71.0 74.8
NoFrameInduction 79.2 70.7 74.7
SyntF 69.9 73.3 71.6

Table 2: Role labeling performance.

tion to their head, as described in (Lang and La-
pata, 2010), and the other one is a version of our
model which does not attempt to cluster verbs and
only induces roles (NoFrameInduction). Note that
the NoFrameInduction baseline is equivalent to the
factored model of Titov and Klementiev (2012). The
results are summarized in Table 2.

First, observe that both our full model and its sim-
plified version NoFrameInduction significantly out-
perform the syntactic baseline. It is important to
note that the syntactic baseline is not trivial to beat
in the unsupervised setting (Lang and Lapata, 2010).
Though there is a minor improvement from inducing
frames, it is small and may not be significant.3

Another observation is that the absolute scores
of all the systems, including the baselines, are sig-
nificantly below the results reported in Titov and
Klementiev (Titov and Klementiev, 2012) on the
CoNLL-08 version of PropBank in a comparable
setting (auto parses, gold argument identification):
73.9 % and 77.9 % F1 for SyntF and NoFrameIn-
duction, respectively. We believe that the main rea-
son for this discrepancy is the difference in the syn-
tactic representations. The CoNLL-08 dependencies
include function tags (e.g., TMP, LOC), and, there-
fore, modifiers do not need to be predicted, whereas
the Stanford syntactic dependencies do not provide
this information and the model needs to induce it.

It is clear from these results, and also from the
previous observation that only 25% of verb occur-
rences belong to multi-verb clusters, that the model
does not induce sufficiently rich clustering of verbs.
Arguably, this is largely due to the relatively small
size of FrameNet, as it may not provide enough evi-
dence for clustering. Given that our method is quite
efficient, a single experiment was taking around 8
hours on a single CPU, and the procedure is highly
parallelizable, the next step would be to use a much
larger and statistically representative corpus to in-
duce the representations.

3There is no well-established methodology for testing statis-
tical significance when comparing two clustering methods.

PU CO F1
Our approach 77.9 31.4 44.7
NoClustering 80.8 29.0 42.7

Table 3: Frame labeling performance.

Additional visual inspection suggest that the data
is quite noisy primarily due to mistakes in parsing.
The large proportion of mistakes can probably be ex-
plained by the domain shift: the parser is trained on
the WSJ newswire data and tested on more general
BNC texts.

5 Related Work

The space constraints do not permit us to pro-
vide a comprehensive overview of related work.
Aside from the original model of Titov and Klemen-
tiev (2012), the most related previous method is the
Bayesian method of Titov and Klementiev (2011).
In that work, along with predicate-argument struc-
ture, they also induce clusterings of dependency
tree fragments (not necessarily verbs). However,
their approach uses a different model for argument
generation, a different inference procedure, and it
has only been applied and evaluated on biomedi-
cal data. The same shallow semantic parsing task
has also been considered in the work of Poon and
Domingos (2009; 2010), but using a MLN model
and, again, only on the biomedical domain. An-
other closely related vein of research is on semi-
supervised frame-semantic parsing (Fürstenau and
Lapata, 2009; Das and Smith, 2011).

6 Conclusions

This work is the first to consider the task of unsuper-
vised frame-semantic parsing. Though the quantita-
tive results are mixed, we showed that meaningful
semantic frames are induced. In the future work, we
intend to consider much larger corpora and to focus
on a more general set-up by relaxing the assumption
that frames are evoked only by verbal predicates.
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